

Binary logic

In digital circuits only two states are defined

- (a) High or 1 or true
- (b) Low or 0 or false

Note: A low state may be of OV and a high state may be of 5V (and not necessarily OV and 1V respectively)

Logic gates

Basic building blocks of digital electronics are called Logic Gates. These process the digital signals in a specific manner. Logic gates are used in calculators, digital watches, computers, robots, industrial control systems, and in telecommunications.

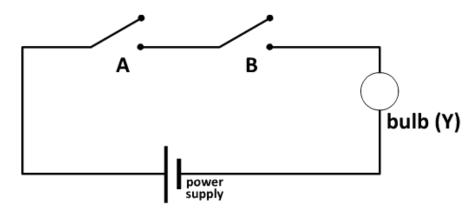
AND gate **NAND** gate

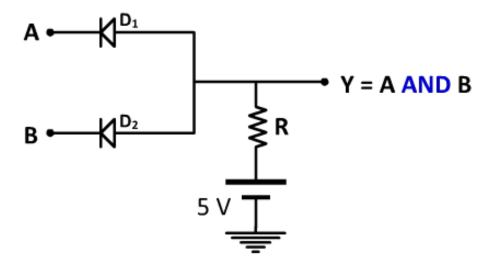
OR gate **NOR** gate

NOT gate **XOR** gate

AND gate

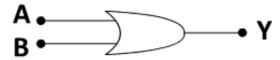
Output is high if both the inputs A and B are high


Circuit symbol


Truth table

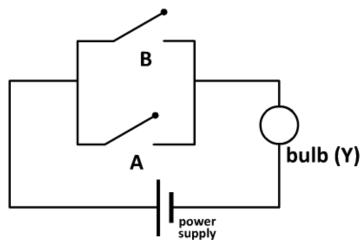
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

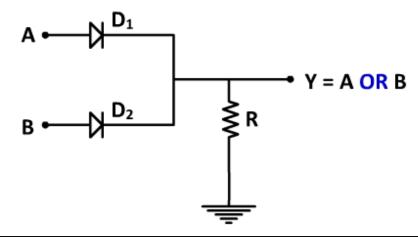
Implementation using switches


Implementation using diodes

OR gate

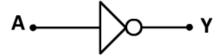
Output is high if either input A or input B is high


Circuit symbol


Truth table

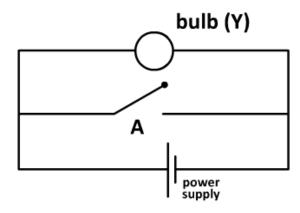
Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Implementation using switches


Implementation using diodes

NOT gate

Output is $\underline{\mathsf{not}}$ the same as the input


Circuit symbol

Truth table

Α	Υ	
1	0	
0	1	

Implementation using switches

NAND gate

Truth table

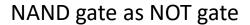
Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

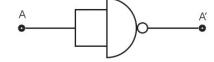
NOR gate

Truth table

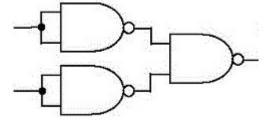
Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

XOR gate

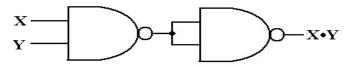

Truth table


Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Universal gates


NAND and NOR gates are considered as universal gates

NAND gate as universal gates



NAND gates as OR gate

NAND gates as AND gate

Universal gates

NAND and NOR gates are considered as universal gates

NOR gate as universal gates

NOR gate as NOT gate

NOR gates as OR gate

NOR gates as AND gate

De Morgan's theorems (for logic gates)

De Morgan's Theorem can be used to find the equivalency of NAND and NOR gates

First theorem : $\overline{A \bullet B} = \overline{A} + \overline{B}$

Second theorem:	$\overline{A+B} = \overline{A} \bullet$	\overline{B}
Second theorem.	$II \mid D - II \mid$	D

Inp	outs	Truth Table Outputs For Each Term				
В	Α	A.B	A.B	Ā	B	Ā+B
0	0	0	1	1	1	1
0	1	0	1	0	1	1
1	0	0	1	1	0	1
1	1	1	0	0	0	0

Inp	outs	Truth Table Outputs For Each Term				
В	A	A+B	A+B	Ā	B	Ā.B
0	0	0	1	1	1	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1	0	0	0	0

sigmaprc@gmail.com
sigmaprc.in

